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Confocal scanning laser microscopy was used to study the behavior of dense suspensions of model colloidal
hard spheres at a single wall. Due to the slight polydispersity, our system shows a reentrant melting transition
at high densities involving a hexatic structurefR. P. A. Dullens and W. K. Kegel, Phys. Rev. Lett92, 195702
s2004dg. The reentrant melting transition is accompanied by an increase in the mean-squared displacement. The
correlation between structure and dynamics was quantitatively analyzed on a single-particle level. In particular,
the topological lifetime, being the average time that a particle spends having the same coordination number, is
determined for all coordination numbers and as a function of volume fraction. The defectivesnon-sixfold-
coordinatedd particles exhibit shorter lifetimes than sixfold-coordinated particles, indicating that the mobility of
the system is larger at or close to defective particles. The lifetime itself is a strong function of volume fraction.
In particular, the global behavior of the mean-squared displacement is proportional to the hopping frequency
sthe inverse of the lifetimed, showing that particles changing their coordination number contribute most to the
local mobility.
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I. INTRODUCTION

The presence of walls can have an enormous impact on
the behavior of a wide diversity of systemsf1g. Also in col-
loid physics, the influence of walls has gained growing in-
terest during the last decadesf2g. In particular, the crystalli-
zation of colloids in confinement and at a single wall has
been a continuous matter of interestf3–14g. For example, the
existence of a prefreezing transition of hard spheresf8–11g
and the enormous increase of the crystal nucleation rate in
the vicinity of wallsf10,15g illustrate the remarkable impact
of confinement. Prefreezing has also been reported in binary
hard-sphere systems and colloid-polymer mixtures at a wall
f16–19g. The perturbation of bulk behavior is even more
pronounced if the bounding surface is patternedf6,20–22g.
Furthermore, in completely confined two-dimensional
s2Dd systems a hexatic phase may appear as proposed in
the Kosterlitz-Thouless-Halperin-Nelson-YoungsKTHNY d
theory for 2D crystal meltingf23–25g. Due to the presence of
free dislocations, the hexatic phase is characterized by short-
range translational order and quasi-long-range orientational
order. Although several experimentsf5,26–29g have vali-
dated the KTHNY melting scenario, the scenario has not
been fully pinned down, in particular for hard disks.

Dynamical properties of confinedsquasi-d2D colloidal
systems have been investigated in many previous studies
f5,30–39g. They demonstrated the presence of dynamical
heterogeneities, which were also observed in 3D colloidal
systemsf40,41g. Dynamical heterogeneities arise as particles
in given regions exhibit larger mobility than other regions.
These particles typically exhibit cooperative stringlike mo-
tion f42g. As a consequence, the probability distribution of
displacements shows strong devations from a single Gauss-
ian distributionf40–42g. It was even suggested that multiple
dynamical subsets of particles are present in dynamical het-

erogeneous systemsf40g. Furthermore, the existence of dy-
namical subsets might be related to structural differences
between the subsets as there are clear indications that
mobile particles tend to be in regions of higher disorder
f5,6,30,32,34–36,43g.

Although the coupling between the structure and dynam-
ics has been observed in several studies, there is hardly any
direct quantitative measure of the structure-mobility relation.
Weeks and Weitz showed that particles with larger displace-
ment have fewer ordered neighborsf43g. Recently, it was
proposed to examine dynamical heterogeneities in terms of
fluctuations in the topological defect densityf34g. These re-
sults point towards the importance of the defect structure
with respect to the dynamics of the system. Here, we analyze
on a single-particle level the correlation between the local
structure and dynamics of slightly polydisperse hard spheres
at a wall. Rather than consideringsmetastabled fluids, we
also inspect this coupling throughout the whole range of
structures observed in our system at the wallf7g. First of all,
we characterize the defect structure as a function of the vol-
ume fractionf quantitatively. Then, we correlate defect sta-
tistics to dynamics by analyzing the single-particle topology
as a function of time for different coordination numbers.
Subsequently, we define a topological lifetime, which char-
acterizes the correlation between the local structure and dy-
namics. Finally, we discuss the behavior of the mean-squared
displacement in terms of lifetimes and defects.

The paper is organized as follows. In Sec. II, we describe
the colloidal model particles as well as the confocal micros-
copy setup. The data analysissdefect statistics, mean-squared
displacement, and topological lifetimesd is explained in Sec.
III. In Sec. IV first thesdefectd structure of our systemsSec.
IV A d is presented. Furthermore, the dynamicssSec. IV Bd
and the relation between structure and dynamics in terms of
topological lifetimessSec. IV Cd are discussed.
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II. EXPERIMENT

A. Colloidal model system

We used colloidal model hard spheres that could be im-
aged directly using confocal scanning laser microscopy. The
particles consist of a core of silica, 450 nm in diameter, la-
beled with the fluorescent dye fluorescein isothiocyanate
f44g. The cores are covered with a shell of nonfluorescent
polymethylmethacrylatesPMMAd f45g. The system is steri-
cally stabilized by a layer of 12-poly-hydroxystearic acid
that is covalently linked to the PMMAf46g. The resulting
silica-core-PMMA-shell particles were dispersed in a mix-
ture of tetralinsMerck, for synthesisd, cis-decalinsMerck, for
synthesisd, and carbon tetrachloridesMerck, for spectros-
copyd which snearlyd matches the refractive index and the
mass density of the colloids. The volume ratios were 30%
tetralin, 30% cis-decalin, and 40% carbon tetrachloride. In
this mixture the particles behave as hard spheresf40g. The
particle diameterd is 1.4mm and the size polydispersity is
6% as estimated from scanning electron microscopy.

B. Microscopy

A Leica DM IRB confocal scanning laser microscope in
combination with an argon lasersl0=488 nmd, a Leica TCS
NT scanhead, and an oil-immersion lenssLeica 1003, NA
1.4d was used in fluorescence mode. Using confocal micros-
copy, thin 2D cross sections of the sample are imaged. The
thickness of this so-called focal plane is about 600 nmf47g.
The colloidal suspension was contained in a small vialscon-
tents,1 mld f47g. The bottom of the vial was removed and
replaced by a microscope cover glasssChance Propper LTd.,
West Mids, England, 0.11 mm thicknessd, which was glued
to the vial using an epoxy gluesAraldit AW2101 with hard-
ener HW2951d ssee Fig. 1d. In this work, we imaged the
particles present in the first layer at the glass wall, parallel to
the flat glass bottom of the container. Hence, thez position of
the focal plane coincides with the particles present in the first
layer at the glass wallssee Fig. 1d. No signs of attractions
between the particles and glass wall were foundsas expected
since the refractive index of the glass is matched by the
solvent mixtured.

The volume fractionf of the samples was defined relative
to the volume fraction at random close packing of 6% poly-
disperse hard spheres. This fraction was set at 0.66f48g. By
subsequently diluting the dispersion in the sample cell, the

volume fraction was decreased fromf=0.64 tof=0.44 in
steps of typically 0.03. During the experiments the sample
cell containing the dispersion was carefully weighed to cor-
rect for possible evaporation of the solvent. After each
dilution step, the sample was thoroughly tumbled until the
dispersion was fully homogenizedschecked by confocal mi-
croscopyd. At every volume fraction, time series of typically
100 images of the particles present in the first layer at the
bottom wall were taken.

Of course, the wall-based layer is in contact with the bulk,
which allows interlayer particle hopping. To make a 2D
analysis of the first layer possible, interlayer hopping should
be insignificant, which is the case in our experiment. First of
all, at these volume fractions the system is strongly layered
at the flat wallf3g. Furthermore, the particle displacements
are very small compared to the interlayer distancesof the
order of a particle diameterd as we will show later. Moreover,
typically more than 90% of the particles are tracked through-
out the whole time series, indicating that only an insignifi-
cant number of particles is lost. We also checked that at all
volume fractions the number of particles is constant during
the experiment. Thus, interlayer hopping is not expected to
interfere with our 2D analysis of the wall baser layer.

III. DATA ANALYSIS

A. Defect statistics

Since the particles have a fluorescent core and a nonfluo-
rescent shell, the particle centers could be easily retrieved
with high accuracy from the raw microscopy images using
image analysis software similar to those described inf49g.
Correlating the particle positions within single frames using
a Delaunay triangulation, the number of nearest neighbors of
every particlesi.e., the coordination numberncd was identi-
fied. The fraction ofnc-coordinated particles is then easily
calculated:

Xnc
=

Nnc

N
, s1d

whereNnc
is the number of particles with coordination num-

ber nc andN is the total number of particles.

B. Mean-squared displacements

Tracking the particles in time allows the analysis of the
single-particle dynamics. First of all, we calculated the self-
part of the Van Hove correlation functionGs, being the prob-
ability distribution that a particle has traveled a distancer in
a time intervalt:

Gssr,td =
1

NKo
i=1

N

d„r + r is0d − r istd…L . s2d

Subsequently, the mobility of the particles was measured in
terms of the mean-squared displacementkr2l, which is de-
fined as the second moment ofGs:

kr2stdl = o
i=1

N

r2stdGssr,td. s3d

FIG. 1. Experimental setupsnot to scaled. The position of the
focal plane is indicated.
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C. Topological lifetimes

As a measure for the time scale corresponding to local
structural relaxation, we introduce the so-called topological
lifetime. This topological lifetime of a given coordination
number,tnc

, is defined as the average time that a particle
keeps the same coordination number between twonc
changes. To calculate the lifetime, we followed the behavior
of nc as a function of time for the single particles. Figure 2
shows a typical example of such a single-particle coordina-
tion track. These coordination tracks allow us to measure the
time intervalstnc

that a particle retains the same coordination
number. An example of such a time intervaltnc

for nc=6 and
7 is indicated in Fig. 2. Thus, all the single-particle coordi-
nation trackssfrom all the tracked particlesd provide a whole
set of time intervalstnc

for each coordination numbernc. The
lifetime of a given coordination number is then defined as
the average over that whole set of time intervals:

tnc
=

1

Mnc

o
i=1

Mnc

tnc

sid, s4d

whereMnc
is thus the total number of time intervalstnc

in all
single-particle coordination tracks.

Due to the finite length of a coordination track, the initial
and final time intervalsstinitial and tfinal in Fig. 2d are not
properly bounded by twonc changes. To correct for this, we
loop the coordination tracks as illustated in Fig. 2. Now,
there are three different cases possible. First, if the initial
coordination number is equal to the final coordination num-
ber sas in Fig. 2d, a time interval equal to the sum oftinitial

and tfinal is taken into account. Second, if the initial coordi-
nation number is not equal to the final coordination number,
just tinitial and tfinal are taken as such. And finally, ifnc is
constant throughout the whole coordination track, a time in-

terval equal to the length of the coordination track is taken
into account.

To improve statistics, we demand the minimum coordina-
tion track lengthsi.e., the minimum number of frames that a
particle is trackedd to be 20% of the total time series. Increas-
ing this length mainly affects the statistics of the defective
particles, as they move faster and are more difficult to track.
On the other hand, a smaller minimum track length enhances
the effects of the finite track length. The maximum track
length is per definition equal to the full time series. This
limits the maximum lifetime to the total of the time series,
thereby underestimating the very large lifetimes. Although
the obtained lifetimes are slightly influenced by values of the
minimum and maximum track length, the results do not
change significantly.

Here and below, all distances are given in units of the
particle diameter and time is represented in units of the
Brownian timetb, being the required time for a particle to
diffuse over its own diameter at infinite dilution. Here,tb
=d2/6D0=1.6092s, whereD0 is the diffusion constant at in-
finite dilution.

IV. RESULTS

A. Structure

Due to the slight polydispersity, crystallization was virtu-
ally absent in the bulk which allowed detailed study of
glassy dynamicsf40g. The situation is completely different at
the bottom glass wall of the sample container. Here the sys-
tem shows significant orderingf7g, which may be explained
by the enormous increase of the crystal nucleation rate in the
vicinity of a wall f10g. Furthermore, size fractionation has
been suggested to suppress the local degree of polydispersity,
which could enhance crystallization as wellf50g. Upon in-
creasing the volume fraction the system shows a reentrant
melting transitionsf.0.57d f7g. Using the formalisms of the
Kosterlitz-Thouless-Halperin-Nelson-Young theory for 2D
melting f23–25g, it turned out that the ordered phases0.52
øfø0.57d has a hexatic structure rather than crystallinef7g.
Thus, the structural sequence of the first layer in our system
for increasing volume fraction is, respectively, fluid, hexatic,
and reentrant fluidf7g.

The defect structure corroborates the hexatic structure.
Figure 3 shows Delaunay triangulations of the system atf
=0.55shexaticd, 0.57shexaticd, andf=0.60sremeltingd. The
defects are color codedssee the caption of Fig. 3d. In the
hexatic regions we indeed observe free dislocationss5-7 dis-
clination pairsd as well as somewhat larger compact defect
clusters. These clusters have a typical size of three to four
particle diameters consistent with earlier reportsf5g. At a
volume fraction of 0.55 clearly a grain boundary, a more-or-
less closed loop of defects, is observed. The lattice orienta-
tion within differs significantly from the orientation outside
the grain boundary, which destroys the orientational order
f5g. However, away from the grain boundary, the defect
structure is similar to the one observed atf=0.57. At f
=0.60, where the system is remelting, the concentration of
defects has increased significantly. The defects now percolate

FIG. 2. A typical example of a single-particle coordination
track:nc as a function of timesin blackd. Examples of time intervals
for coordination numbers 6 and 7 are indicated ast6 and t7. The
grey lines illustrate the looping of the tracks to properly take into
account the initial and final time intervalssrespectively indicated as
tinitial and tfinald, as described in the text.
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through the whole image, and we also observe free disclina-
tions.

The defect structure can be quantified by calculating the
fraction ofnc-coordinated particlesfEq. s1dg as a function of
volume fraction, which is shown in Fig. 4. The reentrant
character is reflected by the maximumsminimumd in X6
sX5,X7d at 0.52øfø0.57, which corresponds to the hexatic
region. More interesting,X5>X7 in this region, indicating
that the disclinations are indeed bound in pairssdislocationsd.
Above and below the hexatic region these fractions are not
equal anymore, pointing towards the generation of free dis-
clinations. Furthermore, we observe at all volume fractions
that there are hardly particles having a coordination number
different from 5, 6, or 7. As a consequence, the system is
fairly well described by taking into account only the particles
havingncP f5,7g.

The presence of a hexatic structure might reflect the two-
dimensional character of the first layer at the wall, as hexatic
phases mainly have been observed in monodisperse
f5,26–28g as well as polydisperse 2D colloidal systems
f51–54g. The strong layering of a 3D fluid at a single wallf3g
corroborates the 2D character of the first layer at a wall,

although structural and dynamical differences between 2D
and the first 3D layer have been reportedf4,12g. However, in
monodisperse 3D systems at a wall hexatic structures have
not been reportedf3,6,8–11,55g. Therefore, the particle poly-
dispersity might play a crucial role in the formation of the
hexatic structure in the first 3D layer in our system as geo-
metrical frustration is known to promote the formation of a
hexaticlike structuref56–58g.

B. Dynamics

The reentrant melting transition is accompanied by an in-
crease in the mean-squared displacementsFig. 5d, ruling out
the possibility of glass. Note that the displacements are small
compared to the particle diameters; interlayer distanced, so
interlayer hopping is expected to be insignificant on the time
scale of the experiment. Therefore, hopping between the first
and second layer is hardly observed. The increase of the

FIG. 3. scolor onlined Delaunay triangulations of the system at different volume fractions. From left to right:f=0.55 shexatic, 50
350 mm2d, 0.57shexatic, 40340 mm2d, and 0.60sremelting, 50350 mm2d. At f=0.55 the grain boundary is indicated by the black circle.
The color code for the defects is as follows: fourfold, blue; fivefold, green; sixfold, no color; sevenfold, red; eightfold, purple.

FIG. 4. Fraction of defects as a function of volume fraction.
Symbols:nc=4 shd, 5 s,d, 6 ssd, 7 snd, 8 svd, and 9sxd.

FIG. 5. Mean-squared displacements as a function of timet for
different volume fractions. Forf=0.57 andf=0.60sgreyd the kr2l
clearly increases. Note that this increase is present for all studied
times t. The inset is a vertical cut through thesr2 vs td plot and
showskr2l as a function off for t=31.07 Brownian times. The line
in the inset is to guide the eye.
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mobility is expected to be correlated to the defect structure
of the system. To look into this, we show the positions of the
centers of the particles over 100 time steps for several vol-
ume fractionssFig. 6d. In the isotropic fluid atf=0.45 the
particles exhibit homogeneous dynamics as expected for a
liquid. At freezing,f=0.50, we clearly observe ordered and
disordered regions, as well as more and less mobile particles.
The more mobile particles exhibit typical stringlike, coopera-
tive motion f42g. Furthermore, the mobile particles tend
to be located in the more disordered, defective regions
f5,6,30,32,34–36,43g. At a volume fraction of 0.55shexatic-
like structured, the system seems to be dynamically homoge-
neous. Even the particles in the defective regions—for ex-
ample, in the grain boundary as shown in Fig. 3—do not
show significant higher mobility. As the system starts to re-
melt atf=0.60, the ordered hexatic structure starts to break
up by introducing more defectssFig. 3d. Similar to the situ-
ation atf=0.50, the more mobile particles are typically lo-
cated in the more defective regions. Furthermore, the string-
like, cooperative motion, characteristic of the presence of
dynamical heterogeneities, is observed again. These dynami-
cal heterogeneities manifest themselves also as non-Gaussian
contributions to the self-part of the Van Hove correlation
function fEq. s7dg. If the system is dynamical homogeneous,
Gs is expected to have a single-Gaussian shapef59g. To il-
lustrate that this is indeed the case, we show in Fig. 7 the
self-part of the Van Hove correlation function for the isotro-
pic liquid at f=0.45 and for the dynamical heterogeneous
remelting system atf=0.60. TheGs for the fluid is well
described by a single-Gaussian distribution, whereas theGs
at f=0.60 shows significant deviations from a single-
Gaussian distribution. Moreover, it can be fairly well de-
scribed by a sum of two Gaussians, pointing towards the

existence of a slowsthe wide Gaussiand and a faststhe nar-
row Gaussiand subset of particles.

C. Structure, dynamics, and topological lifetimes

Although the correlation between structure and dynamics
seems to be well accepted on a qualitative level, it is not
always obvious. For example, our system atf=0.55 is dy-
namically fairly homogeneous, while structurally clearly not,
as there are clearly ordered and disordered regionssrecall the
presence of a grain boundaryd present. Futhermore, in bulk,
our system is structurally homogeneoussdisorderedd, but still
exhibits dynamical heterogeneitiesf40g. In addition, the
present tools are unable to quantitatively link statics and dy-
namics. To gain more quantitative insight into the relation
between structure and dynamics, we studied the fluctuations
in the particle topology in terms of topological lifetimes as
defined in Sec. III C. The lifetime is a measure for the sta-
bility of a local structure characterized bync and directly
correlates local structure and dynamics.

As a start, we show that our system obeys ergodicity,
proving the meaningfulness of our definition of topological
lifetimes. The defect statistics can be expressed in terms of
lifetimes demanding ergodicity; i.e., the ensemble average,

FIG. 6. Particle positions over 100 imagesstime stepsd for sev-
eral volume fractions:f=0.45sfluid, 23323 mm2d, 0.50sat freez-
ing, 30330 mm2d, 0.55 shexatic, 50350 mm2d, and 0.60sremelt-
ing, 50350 mm2d.

FIG. 7. Self-part of the Van Hove correlation functionGs. Top:
in the isotropic liquidsf=0.45d the Gs is a single-Gaussian func-
tion, which indicates diffusive motion. Atf=0.60,Gs strongly de-
viates from a single-Gaussian function, indicating the presence of
dynamical heterogeneities. Moreover, theGs is fairly well described
by a sum of two Gaussians: a wide onesgrey lined for the fast
subsetsgrey dotsd and a narrow onesblack lined for the slow subset
sblack dotsd.
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as defined by Eq.s1d, must be equal to the time average:

Xnc
=

Nnc

N
sens avd =

tnc
Mnc

onc
tnc

Mnc

stime avd. s5d

In Fig. 8 the results of Eq.s5d are presented forncP f5,7g. It
is observed that the defect statistics obtained via the time
average very accurately reproduces the result from the en-
semble average, thereby demonstrating the ergodicity of our
system and the meaningfulness of the lifetimes.

Next, we investigate the coordination number dependence
of the lifetimes for different volume fractions. This is shown
in Fig. 9. It is clearly observed that for all volume fractions
the lifetime for nc=6 is always the largest. Fivefold- and
sevenfold-coordinated particles have comparable lifetimes,
but much smaller than the sixfold-coordinated particles. This
implies that local structures involving sixfold coordination
are always the most stable. This is a direct consequence of
the average coordination number in 2D liquids being 6f5g.
As a result, at all volume fractions the defective particles
have the tendency to return to a sixfold-coordinated state.
This is reflected by the defect statisticssFig. 4d, but can be

shown more directly by defining a “hopping probability”—
that is, the probability that a particle with a given coordina-
tion numbernc hops tonc±1:

Psnc→nc±1d =
Xsnc±1d

Xsnc−1d + Xsnc+1d
, s6d

where we assume thatDnc; ±1. Here, the hopping probabil-
ity is expressed in terms of defect fractions. Hence, it can
also be expressed in terms of lifetimes, as the system is er-
godic fEq. s5d is validg. The hopping probability as a func-
tion of volume fraction is presented in Fig. 10. The probabil-
ity that a particle goes back tonc=6 is indeed observed to be
close to 1 for all volume fractions—i.e., regardless of the
structure of the system. Consistently, the probability that a
fivefold- or sevenfold-coordinated particle becomes, respec-
tively, a fourfold- or eightfold-coordinated particle is negli-
gible. Note that for volume fractions outside the ordered
shexaticliked region s0.52øfø0.57d a sixfold particle is
more likely to become fivefold coordinated rather than sev-
enfold sPs6→5d. Ps6→7dd, whereas within the hexatic region,
these probabilities are almost equal.

Furthermore, the lifetimes also exhibit a strong volume
fraction dependence for each distinct coordination number
sFig. 9d. For all nc the lifetimes atf=0.64 sclose to random
close packingd are the largest. If we go down along the life-
time axis, we successively encounter the three branches that
correspond to the hexaticlike regions0.52øfø0.57d, the
reentrant fluid branch atf=0.60, and finally the fluid regime
sfø0.50d. We should mention that the lifetimes for the rare
coordination numbers—i.e.,nc=4, 8, and 9—are not very
reliable because of very poor statistics as the corresponding
X4, X8, andX9 are just very small. Thef dependence of the
lifetimes for ncP f5,7g is shown more clearly in Fig. 11.
Here, the different structural regimessfluid, hexatic, remelt-
ing fluid, and close to random close packingd as already iden-
tified from Fig. 9 are observed even better. This enables us to
estimate a characteristic lifetime fornc=6 in each structural
regionsas a function offd. In the fluid regiont6.3tb, in the
hexatic regiont6.55tb, in the reentrant fluidt6.15tb, and
close to random close packingt6.80tb. Our values for the
fluid and hexatic regions are in reasonable agreement with

FIG. 8. Fraction of defects as a function of volume fraction:
ensemble averagefEq. s1d, in blackg and time averagefEq. s5d, in
greyg. Symbols:nc=5 s,d, 6 ssd, and 7snd.

FIG. 9. The lifetimet in units of tb as a function of the coor-
dination numbernc for different volume fractions.

FIG. 10. Hopping probabilities as obtained from Eq.s6d.
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the orientational correlation time as defined by Murrayet al.
f−d ln g68s0,td /dtg−1 f4,5,37g, which is a measure of the time
decay of the bond-orientational orderf5g. This agreement is
expected as the bond-orientational order is highly sensitive
to the coordination number and, in particular, to the bond
angles of the nearest neighbors. As long as a particle stays
sixfold coordinated, the sixfold bond-orientational order is
preserved to some extentsthere might be fluctuations in bond
anglesd. If the nc changes, the bond-orientational order is
destroyed, indicating that ourt6 is similar to the orientational
correlation time defined by Murrayf5g.

In addition, we can also determine these time scales for
different local structures—i.e., different coordination
numbers—at all volume fractions. For example, fornc=5
these characteristic lifetimes are, respectively, in the fluid
t5.tb, in the hexatict5.7tb, in the reentrant fluidt5
.3tb, and close to random close packingt5.35tb. Note
that thet7 is almost equal tot5. We further observe in Fig. 11
thatt5 st7d exhibits a similar volume fraction dependence as
t6. Again, the distinct structural regions are identified. How-
ever, the magnitude oft5 st7d does not scale withf as t6

does, which is evident from the inset of Fig. 11. The inset
shows the ratio betweent6 and the average oft5 and t7
(t6/ s0.5ft5+t7gd) as a function of volume fraction. In the
fluid phase and close to random close packing, this ratio is
roughly 2, in the hexatic region about 8 and in the reentrant
fluid approximately 5. Thus, upon ordering atf.0.50, the
difference between the lifetimes corresponding to, respec-
tively, sixfold-coordinated sorderedd and non-sixfold-
coordinatedsdisorderedd particles increases. Therefore, the
ratio t6/ s0.5ft5+t7gd as well ast5,t6,t7 identify the differ-
ent structural regions and might therefore be identified as a
dynamical order parameters for orderingf37,38g.

Besides the characteristic lifetimes for each structural re-
gion, we clearly recognize in Fig. 11 the global behavior of
the mean-squared displacement as function off as shown in
the inset of Fig. 5. Interestingly, this suggests that there is a
quantitative correlation between topological lifetimes and
mobility. Hence, the lifetimes are more or less determined by
the local mobility of the particles. If a given particle and/or

sone ofd its neighbors is moving significantly, the coordina-
tion number of the given particle changes, thereby setting a
typical lifetime. Therefore, a very large lifetime indicates
that the local structure of a particle does not change, corre-
sponding to a low mobility in that particular region. In other
words, if the lifetime is large, the mobility is small; hence,
the mean-squared displacement is expected to scale with the
inverse of the lifetimeswhich can be interpreted as a hopping
frequencyd. The weight of the contribution oftnc

to the mo-
bility smean-squared displacementd is given by the concen-
tration of particles beingnc coordinated,Xnc

. Finally, we
have to sum over all coordination numbers to take into ac-
count all the particles. Although the qualitative trend is de-
scribed correctlysdata not shownd, we may improve the
quantitative agreement. Now, the lifetimes are taken into ac-
count as a single-particle property. However, if the coordina-
tion number of given particle changesssetting the lifetimed,
in the dense system the coordination number of a neighbor-
ing particle changes as well. Therefore, correlations could be
important and the lifetime may have a larger influence on the
mean-squared displacement. To account for this and improve
the quantitative agreement one might introduce an additional
parametera such that rather thankr2l~1/tnc

, the mean-
squared displacement may scale as

kr2sfdl ~ o
nc

1

tnc

a sfd
Xnc

sfd. s7d

By fitting Eq. s7d to the experimental data a value ofa
=1.8 was obtained. In Fig. 12 the result of Eq.s7d with a
=1.8 and the experimental data of the inset of Fig. 5 are
shown. Although it remains unclear what exactly determines
the value ofa, we clearly observe that the trend of the data is
described fairly well by Eq.s7d. This implies that particles
undergoing a coordination-number change dominate the be-
havior of the mean-squared displacement, which confirms
that defective particlesseither before or after changingnc:
ncÞ6d are the most mobile particles.

V. CONCLUSION

We have quantitatively analyzed the correlation between
structure and dynamics on a single-particle level in terms of

FIG. 11. Lifetime as a function of volume fraction for different
coordination numbers. Symbols:nc=5 s,d, 6 ssd, and 7snd. The
inset shows the ratiot6/ s0.5ft5+t7gd as a function of the volume
fraction.

FIG. 12. Mean-squared displacement as a function of volume
fraction for t=31.07 Brownian times. The experimental data in are
black and the results obtained using Eq.s7d are in grey.
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topological lifetimet, being the average time that a particle
spends having the same coordination number. Our analysis is
easily applicable to other systems such as confined quasi
s2Dd systems and bulks3Dd systems. The defectivesnon-
sixfold-coordinatedd particles exhibit shorter lifetimes than
sixfold-coordinated particles, indicating that the mobility of
the system is larger in defective regions. The lifetime itself
shows a strong volume fraction dependence. In particular,
the global behavior of the mean-squared displacement is pro-
portional to the inverse of the lifetimeshopping frequencyd,
showing that particles changing their coordination number
contribute most to the mobility.
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